摘要
在癌症分类研究领域,高维、高冗余、类分布不平衡的基因表达数据如何进行特征选择与分类模型构建一直是影响分类准确率的难点。为了提高癌症分类的准确率,提出了基于特征交互与权重集成的癌症分类方法。在特征选择层面,利用多特征对分类信息的增益性交互作用来选出对于标签联合互信息大于单独互信息之和的特征组合,并利用条件互信息选择低冗余的特征,解决基因表达数据的高维、高冗余问题。在分类模型层面,提出结合权重集成反馈机制的二次学习集成模型,综合不同模型对不同类别样本的差异拟合能力,构造不依赖于样本数量的类权重,解决数据类分布不平衡的问题。应用该方法对六种癌症数据进行分类测试,accuracy、sensitivity、precision和F-measure四项指标均稳定在99.39%以上、specificity在94.74%以上,表明该方法能有效提高癌症分类的准确率和稳定性,同时具有对于不同癌症分类的通用性。
- 单位