摘要

为解决交通标志目标易受复杂环境影响且呈现多尺度分布,造成识别精度低的问题,构建一种多尺度卷积神经网络模型。针对不同尺寸输入设计相应的网络结构,提取目标特征,实现对不同尺寸目标的识别,再加权融合各子网络结果得到最终识别结果,实现多尺度目标识别。经实验验证分析,提出算法模型在小尺寸目标、较小尺寸目标、中尺寸目标、大尺寸目标上识别率分别达到99.12%,99.24%,99.41%,99.35%,保障了多尺度输入目标识别的鲁棒性,综合识别率可以达到99.31%,验证了算法在平衡实时性及准确率的基础上,具有一定的实用价值。

全文