摘要
针对HTTP恶意流量检测问题,提出了一种基于裁剪机制和统计关联的预处理方法,进行流量的统计信息关联及归一化处理。基于原始数据与经验特征工程相结合的思想提出了一种混合结构深度神经网络,结合了卷积神经网络与多层感知机,分别处理文本与统计信息。与传统机器学习算法(如SVM)相比,所提方法效果提升明显,F1值可达99.38%,且具有更低的时间代价。标注了一套由45万余条恶意流量和2000万余条非恶意流量组成的数据集,并依据模型设计了一套原型系统,精确率达到了98.1%~99.99%,召回率达到了97.2%~99.5%,应用在真实网络环境中效果优异。
-
单位中国科学院大学; 中国科学院信息工程研究所