摘要
棉叶螨是影响棉花产量和品质的主要虫害之一。为快速、准确、有效地监测棉叶螨发生情况,利用无人机搭载数码相机获取数码影像,并计算多种可见光植被指数作为初选特征因子,然后采用ReliefF-Pearson特征降维方法选取最佳建模特征,分别构建偏最小二乘回归(PLSR)、BP神经网络(BPNN)、随机森林(RF)的棉花冠层叶片叶绿素相对含量(SPAD)值遥感估测模型和棉叶螨严重度遥感估测模型。结果表明,棉叶螨严重度与棉花冠层叶片SPAD值呈显著负相关关系。经过精度评价,确定RF模型具有最佳性能,模型验证的决定系数和均方根误差为0.74、2.13。该研究结果表明利用棉花冠层叶片SPAD值遥感估测模型可准确估测棉叶螨为害情况,为棉叶螨的无损监测和病虫害防治提供参考依据。
- 单位