摘要

近几年,联合聚类划分和表示学习的深度聚类方法提供了出色的聚类性能,但随着图像质量的下降(比如噪声图像),聚类结果还不能令人满意。为此,提出一种新的深度聚类算法(DDC)。深度卷积降噪自编码器学习噪声数据的特征表示;自注意力机制提高网络捕获局部关键信息的能力;端到端的联合训练得到合适的特征表示并完成聚类分配;对数据点和类中心的相似度赋予不同的权重,扩大同类和异类之间的差异。在公开图像数据集上的实验表明DDC算法的聚类性能更高;并与其他深度聚类算法进行对比,例如在COIL-20上DDC的聚类精度是0.803,而DEC算法仅是0.597。总之,结合自注意力和深度卷积降噪自编码器的DDC算法能对噪声图像进行更有效的聚类分析,扩大了图像聚类的应用范围。