摘要

针对现有图像配准方法中存在的鲁棒性与配准精度难以兼容的问题,提出了一种采用SURF特征和局部互相关信息的图像配准算法。首先通过SURF特征提取方法进行初步粗配准以提升配准鲁棒性,然后利用图像中局部关键区域的互相关系数计算出单应矩阵,最后将单应矩阵应用于粗配准结果,对粗配准后的图像进行旋转变换,从而实现高精度和高鲁棒性的图像配准。实验结果表明:提出的配准方法与基于SIFT、ORB、SURF、互相关信息的图像配准方法在多组数据上进行了对比,不仅表现出了较高的配准精度和配准效率,也表现出了更优的鲁棒性。