摘要
针对X射线焊缝的缺陷分类识别难度较高且传统算法复杂、低效的问题,引入了基于深度学习的密集连接卷积网络(DenseNet)算法,并对数据进行了动态增强。DenseNet网络算法脱离了机器学习算法中需要加深网络层数和加宽网络结构来提升性能的定式思维。通过特征重用和旁路设置,从而实现对焊缝缺陷的检测识别。在相同数据集和训练步数下,同最小二乘支持向量机(LS-SVM)与卷积神经网络LeNet算法对比,DenseNet网络提高了模型泛化能力和识别准确率,对焊缝缺陷识别准确率可达98.969%。
- 单位