摘要
针对现有花椒簇检测算法模型参数量多、计算量大、检测速度低、很难部署到嵌入式设备的问题,提出一种基于轻量化YOLOv5s的花椒簇检测算法模型。首先将ShuffleNet v2主干网络替代原YOLOv5s中的主干网络进行重构;同时将SPPF嵌入至ShuffleNet v2骨干中;其次引入轻量级注意力机制CBAM;最后使用SIoU_Loss代替CIoU_Loss作为回归损失函数。试验结果表明:改进后的轻量化YOLOv5s网络参数降低85.6%,计算量降低87.7%,对花椒簇的检测精度mAP@0.5达到92.6%,较原YOLOv5s模型提高3.4%,mAP@0.5:0.95达到61.4%,检测时间为11 ms,相比原模型16 ms缩短31.3%,可以满足在现场环境下对花椒簇的检测。
- 单位