基于电子鼻气味指纹图谱与XGBoost算法鉴别姜黄属中药

作者:拱健婷; 王佳宇; 李莉; 徐东; 丛悦; 关佳莉; 吴浩忠; 邹慧琴*; 闫永红*
来源:中国中药杂志, 2019, 44(24): 5375-5381.
DOI:10.19540/j.cnki.cjcmm.20191101.101

摘要

针对姜黄属中药的鉴别问题,通过电子鼻采集姜黄属郁金、莪术、姜黄、片姜黄4味中药的气味指纹图谱,应用XGBoost算法对中药的气味特征进行学习,并建立快速有效的判别模型;以准确率、精确率、召回率、F度量为指标评估XGBoost的性能。实验结果表明XGBoost建立的判别模型对训练集中166个样本和测试集中69个样本的回代正判率分别为99. 39%,95. 65%,能准确判别姜黄属4种中药;对XGBoost判别模型的贡献度排在前四位的传感器依次为LY2/g CT,P40/1,LY2/Gh,LY2/LG,贡献度最低的传感器是T70/2; XGBoost判别模型预测集准确率、精确率、召回率、F度量分别为95. 65%,95. 25%,93. 07%,93. 75%,均优于传统的支持向量机、随机森林、神经网络,验证了XGBoost在姜黄属中药鉴别中的优越性。电子鼻气味指纹图谱结合XGBoost建立的判别模型可以实现姜黄属中药郁金、莪术、姜黄、片姜黄的快速准确鉴别,为中药智能鉴别提供一种快速、可靠而有效的分析方法; XGBoost算法的引入也提示可将更多性能优异的算法引入到中药领域,为中药气味指纹图谱的数据挖掘提供更多途径。

全文