摘要
对于复杂图像的拉盖尔高斯(Laguerre-Gaussian,LG)谱成像,因为满足奈奎斯特采样率的高阶LG模式系数无法测得,重建图像的失真不可避免,而神经网络算法通过先验学习,可以对失真图像实现较为清晰的复原.提出基于条件生成对抗网络(Conditional Generative Adversarial Nets,cGAN)的图像优化重建方法,在处理下采样的LG谱单像素成像和旋转运动模糊图像中均取得了较好的效果.在1.87%的LG谱采样率下,该方法能将Kaggle数据集人像二值图像的结构相似性(Structural Similarity,SSIM)指数提升至0.8以上,和经典图像去噪算法相比有显著提升.
-
单位南京大学; 固体微结构物理国家重点实验室