摘要
刻画玻色-爱因斯坦凝聚态(BEC)的Gross-Pitaevskii方程通过差分方法离散,转化成一类非线性特征值问题(BEC问题).在这篇文章中,讨论了对BEC问题的求解方法,并给出数值算例.通过半定松弛的方法(SDP松弛方法)和交替方向乘子法(ADMM),计算BEC问题的最小非线性特征值的一个界;通过Lasserre半定松弛,可以依次地计算BEC问题的所有实非线性特征值.在数值算例中,从求解问题的规模和求解速度两方面比较了SDP松弛方法和ADMM,同时用matlab自带的fmincon方法来求解,初步比较了它们的数值计算结果.
- 单位