摘要

为改善通信辐射源指纹特征提取算法抗噪声及干扰能力差导致的对通信辐射源个体分类识别率低和稳定性差的问题,提出了一种基于经验模态分解和奇异值分解特征提取的方法。通过对信号进行经验模态分解,来克服噪声对指纹特征提取的影响,经希尔伯特-黄变换和奇异值分解实现对通信辐射源信号的指纹特征提取,结合支持向量机算法完成对通信辐射源的个体识别,从而提高了分类识别的正确率,经过对4类辐射源信号的实验验证表明识别效果具有明显提升。

  • 单位
    空军工程大学信息与导航学院