摘要
随着锂离子电池的广泛应用,需要现有剩余寿命预测模型适应实际使用工况。针对锂离子电池在循环过程中放电区间对容量衰减影响较大的现象,为解决基于放电性能映射关系建立的剩余寿命预测模型应用范围较窄,提高车用锂电池剩余寿命预测模型适用性能,提出使用经验模态分解将容量分解为波动与趋势分量,并通过建立差分移动自回归模型以及广义回归神经网络分别进行预测,获得锂离子电池剩余寿命。选取NASA和CACEL电池数据集对模型进行验证,并对比基于蚁狮优化的相关向量机的方法,实验结果表明:提出的模型相比蚁狮优化的相关向量机的方法,对容量衰退的跟踪误差平均降低50%,能够实现不同放电区间下的电池老化预测,适用性能好,对电池容量再生现象追踪准确。