摘要
销量预测一直是一个热点研究的课题,对于各个企业有着重要的意义.近年来,随着深度学习的崛起,用于销量预测的模型越来越多,而单一模型的预测性能往往不够理想,所以出现了越来越多的组合模型.本文利用Stacking策略将XGBoost、支持向量回归(Support Vector Regression, SVR)、GRU神经网络作为基础模型,然后将LightGBM作为最终的预测模型,并且融合了新的特征.集中了几种模型的优势,大大提高了模型的预测性能,更加接近真实的销量数据,为回归预测提供一种新的预测方法.
-
单位中国科学院大学; 中国科学院沈阳计算技术研究所; 沈阳高精数控智能技术股份有限公司