摘要

二氧化铈(CeO2)具有储量丰富,价格低廉,催化性能优异等特性而得到广泛应用。通过在其晶格中掺杂其他离子制得CeO2固溶体,可以进一步调控CeO2的晶格大小,增加晶格缺陷浓度,从而有效提高催化性能。目前研究较多的掺杂离子多为金属阳离子,而对非金属阴离子掺杂的研究尚有待深入探索。本文以CO(NH2)2为N源,采用水热法合成不同N掺杂浓度的纳米CeO2-xNx固溶体(x=0.00,0.05,0.10,0.15,0.20),系统对固溶体的微观结构及光谱特征进行表征。X射线衍射(XRD)结果表明,所有掺杂浓度的CeO2-xNx固溶体均呈萤石立方单相结构。与纯CeO2相比,N含量为0.05时样品的晶胞参数显著增大,而随掺杂浓度的进一步增加,晶胞参数又呈现出逐渐减小的趋势。拉曼(Raman)测试表明,N掺杂样品的F2g振动模式峰向高波数移动,其原因是由于当N3-取代部分O2-后,Ce4+周围出现Ce—N键,Ce—N键长因静电引力变强而缩短,从而引起峰位的移动。通过紫外可见吸收光谱(UV-Vis)分析掺杂所引起样品电子跃迁状态的改变,发现N元素的掺杂使CeO2在可见光区域具有了吸光性能,CeO2-xNx固溶体的能隙明显减小,这是由于N(2p)与O(2p)的电子轨道发生交互作用而形成中间能级,使得电子跃迁所需能量降低,从而引起能隙的红移。荧光光谱(PL)测试表明,发射峰强度随N掺杂浓度的增大而增大,其原因一方面是由于N掺杂会引起晶格缺陷及氧空位比例的提升,发生带间跃迁的几率变大,进而提高发射峰的相对强度;另一方面,N的掺杂在价带O(2p)与导带Ce(4f)间形成中间能带,同样会导致发射峰变强。为表征纳米固溶体的催化特性,分别选取N掺杂量最小的CeO1.95N0.05与N掺杂量最高的CeO1.80N0.20以及纯CeO2作为典型催化剂,采用球磨法制备Mg2Ni/Ni/CeO2-xNx复合材料,系统分析了复合材料电极的储氢动力学性能。交流阻抗(EIS)测试发现,催化剂可以有效提高储氢合金的表面电荷转移活性,N掺杂量越高,CeO2基固溶体的催化活性越强;动电位极化曲线测试表明,掺杂催化剂也能显著提高H原子在合金内部的扩散速率,且CeO1.95N0.05较CeO1.80N0.20具有更好的催化活性。催化机理主要从催化剂的微观结构及光谱特征进行分析,如前所述,随着N含量的提高,CeO2固溶体晶格中的氧空位比例增大,晶格畸变程度提高,N的掺杂还使固溶体的电子跃迁能隙降低,从而有利于电子在合金表面的迁移;同时,纳米材料的晶粒尺寸越小,表明晶粒表面缺陷比例越大,说明催化剂的活性增强,因此表现为N掺杂浓度越高,复合材料电极交流阻抗弧半径的越小,即CeO1.80N0.20可以更加有效提高复合材料的表面活性;另一方面,若催化剂的晶胞体积增大,可使H原子在穿过材料表面的传输过程中具有更大的空间,由于CeO1.95N0.05的晶胞参数大于CeO1.80N0.20催化剂,故H原子通过催化剂进入合金内部的传输更加容易。H原子在合金内部的扩散速率与催化剂的晶胞参数或晶胞体积的大小密切相关。