摘要

针对网页的多样性、复杂性和非标准化程度的提高,提出一种基于SVM及文本密度特征的网页信息提取方法。该方法先将网页整体解析成DOM树,然后根据网页结构提出五种网页密度特征,用数学模型进行密度比例分析,并采用高斯核函数(RBF)训练样本数据。该方法训练出的数据模型能够准确地去除网页广告、导航、版权信息等噪音信息,保留正文信息块,最后进行正文信息块内除噪。实验表明,该方法不仅有较高的精度,而且通用性好。