摘要
采用GRNN(Generalized Regression Neural Network)和RF(Random Forest)2种机器学习方法构建土壤有机质预测模型,以提高稀疏样本情况下的土壤有机质估算精度。依据北京市大兴区农用地2007年的土壤有机质采样数据,按MMSD准则(Minimization of the Mean of the Shortest Distances)抽稀为8种不同采样密度的样本(分别为2703、1352、676、339、169、85、43、22个样本),分别采用GRNN、RF和Ordinary kriging对各采样密度下的未知采样点进行预测,采用交叉检验的方式验证各采样密度下未知样点的预测精度。随着采样点密度的下降,样点间的空间自相关性逐渐减弱,半变异函数的拟和精度变差,预测点结果误差增大,预测的置信度降低。当抽稀到43个和22个采样点时,样点间的空间自相关性接近歼灭,半变异函数的决定系数较低且残差较大。普通克里格受到采样点数量和采样密度、样点的空间结构的影响比较明显,其预测精度随采样点数量的下降而下降。在85个采样点及以下时,其预测值与观测值之间没有显著的相关性。GRNN和RF的预测精度受采样密度的影响不大,其预测精度在一个较小的范围内波动,其预测值围绕观测值在一定阈值空间内震荡波动,具有较好的相关性,在85个及以下的采样密度时,预测精度相对普通克里格有较大的提升。普通克里格法不适合在稀疏样本条件下空间插值计算,尤其是在空间自相关性比较弱的情况下。机器学习模型能充分学习土壤间环境信息、样点空间邻近效应信息,兼顾属性相似性和空间自相关,具有更好的稳定性和适应性,不容易受到采样点数量、构型和采样密度等因素的影响,即使在采样点空间自相关性很弱的情况下也能做出稳定预测精度。
- 单位