摘要

考虑到电网负荷与诸多因素有关,设计了一种带有温度、气象、日期类型的广义回归神经网络(GRNN)负荷预测模型。为了提高该模型的预测精度,提出了一种改进果蝇优化算法优化广义回归神经网络(IFOA-GRNN)的方法,即在利用果蝇优化算法(FOA)进入迭代寻优时,通过改进搜索距离优化该算法的性能和稳定性。利用改进的FOA优化GRNN的光滑参数,然后利用训练好的预测模型对甘肃省某地区进行了短期负荷预测,并与FOA-GRNN和误差反向传播神经网络(BPNN)模型结果进行了误差比较。结果表明,IFOA-GRNN具有较高的预测精度,能够满足电力系统短期负荷预测的要求。