摘要

针对电力负荷较为复杂的变化特性,以及现有预测算法未能充分利用数据中的特征、存在精度不足的问题,提出一种基于VMD-DenseNet的组合预测模型。通过VMD将原始负荷序列分解为趋势分量、细节分量和随机分量,并采用最大信息系数为各分量选取相关性较大的特征变量。引入一维DenseNet神经网络模型预测各分量负荷,通过密集连接实现特征重用,加强对各分量特征的提取。以欧洲某电网的负荷数据集为算例,分别在提前1 h和提前6 h两种不同的预测时间尺度下进行实验,结果表明提出的模型都能够更好地提取数据中的潜在特征,相较于其他模型具有更高的预测精度。