摘要
准确预测火场环境变化有助于精准掌握火情的发展趋势,保障人员的安全。由于火场环境多参数并存、耦合关系复杂,且具有时序性和非线性,难以建立准确的预测模型,因此提出了一种基于改进哈里斯鹰算法的自注意机制长短期记忆网络模型,实现了对火场环境数据的精准预测。首先,将Logistic映射策略、余弦权重因子、高斯扰动策略引入哈里斯鹰优化算法,丰富算法的种群多样性、平衡其全局探索和局部开发能力、提高算法的收敛精度。然后,利用改进后的哈里斯鹰优化算法对自注意机制长短期记忆网络模型中的超参数进行优化,基于优化后的参数对火场环境进行预测。仿真结果表明,基于改进后的哈里斯鹰优化算法的自注意机制长短期记忆网络模型拟合效果更好,具有更高的预测精度。
- 单位