摘要
针对利用摄像机进行人体动作识别时易受视距和光线影响等问题,提出一种基于FMCW雷达的人体复杂动作识别方案。首先基于FMCW信号模型对雷达采样数据采用一种以RDM(Range Doppler Map)向速度维投影的方式逐帧构建微多普勒谱图,继而基于微多普勒谱图来提取用于表征整个动作频谱相关信息的8种特征矢量。最后,基于雷达实测数据,以贝叶斯超参数调整优化后的支持向量机作为分类器,分析利用所提取的单特征矢量以及特征矢量组合来进行分类时对分类准确率的影响,用以筛选最优异的特征矢量组合。实验结果表明,从微多普勒谱图中所提取的特征矢量皆可直观地表述整个动作过程的特性,且利用最终筛选得到的最优异的特征矢量组合对已知个体和未知个体的9种动作进行识别,识别准确率分别高达99.07%和96.76%。
- 单位