摘要

针对单向阀振动信号包含背景噪声、故障特征提取困难和诊断准确率不高的问题,提出互补集合经验模态分解(CEEMD)、奇异值分解(SVD)和最小二乘支持向量机(LSSVM)相结合的故障诊断方法.首先,用CEEMD分解单向阀振动信号,并用能量分析法及互相关分析法来选取有用的本征模态函数(IMF).然后,根据SVD法提取相应的故障特征,并输入LSSVM进行故障诊断.通过与集合经验模态分解(EEMD)、支持向量机(SVM)等的比较,表明该方法不仅消除了模态混叠和信号噪声,而且能有效地提取单向阀的故障特征,得到更高的诊断准确率.