摘要
针对动态神经网络风电功率预测模型输入变量较多、模型复杂的问题,将神经网络和平均影响值方法相结合,提出了一种基于神经网络平均影响值的超短期风电功率预测方法。此方法综合考虑了各输入变量对输出变量(风电预测功率)的外部贡献率和内部贡献率,筛选出了对输出变量贡献率最大的输入变量,建立了一个优化的神经网络超短期风电功率预测模型。实验结果表明,所提模型降低了预测模型的复杂度,减少了测量噪声对预测精度的影响,得到了较好的风电功率预测结果。
-
单位南瑞集团公司(国网电力科学研究院); 中国能源建设集团广东省电力设计研究院有限公司