摘要

目前的标签推荐系统使用张量来存储"用户-资源-标签"三维数据,以挖掘三者之间潜在的语义关联。为更好地解决三维数据的稀疏性问题,避免张量填充造成的数据失真,提出基于标签惩罚机制的张量构建方法PM US和基于随机梯度下降的张量分解方法 HOSGD。利用标签惩罚机制和用户评分构建张量,使用随机梯度下降法对张量的展开矩阵进行分解。在此基础上,结合PMUS和HOSGD提出PMUS-HOSGD算法对数据进行处理,根据结果为用户进行个性化标签推荐。在数据集MovieLens上的实验结果表明,与CubeALS、HOSVD和CF算法相比,该算法能够有效提高标签推荐的准确率。

全文