摘要

本文通过一种改进的基于R GB空间的颜色增强算法变换R GB空间颜色值并分割图像,锁定道路两边的图像信息并利用其特有的几何形状检测并定位交通标志,提取其内部图形,建立基于边缘梯度特征的交通标志匹配和污损识别算法模型。该算法利用少量样本快速创建不同尺度和角度下的模板,解决了基于机器学习方法下需要大量样本并训练时间过长的问题,同时基于梯度特征进行匹配,解决了基于灰度的模板匹配对光照变化过于敏感的问题。最后,通过采集了大量图像数据,并研发基于服务端和移动端的原型系统进行模型算法的验证,本文提出的算法具有较高的识别准确率和匹配效率,检测准确率可达到83%,且能满足基于移动端的应用需要。