基于Xception-CEMs神经网络的植物病害识别

作者:项小东; 翟蔚; 黄言态; 刘薇
来源:中国农机化学报, 2021, 42(08): 177-186.
DOI:10.13733/j.jcam.issn.2095-5553.2021.08.24

摘要

随着深度学习技术与农业的密切融合,越来越多的研究将深度学习技术用于农业病虫害检测,提高农产品产量和质量。本文提出一种新颖的基于Xception模型的植物病害识别方法。了解到植物病害图像会受到不确定环境因素的干扰而减小图像信息。在Xception的基础上,提出一种新的通道扩增模块,采用带有通道分配权重的多尺度深度卷积与组卷积结合,增强空间和通道的特征提取效率;在网络中采用通道扩张-保持-再扩张-压缩的新策略,进一步优化通道特征提取;引入密集连接方式,提高在同尺寸的特征图之间特征重用。试验数据集由10种不同植物的50类图像组成,分别包括10种健康植物和27种病害,其中对13种病害进行了两种程度的分类。本文的方法在这些类别上可以获得91.9%的准确率,88.7%的精确率,82.45%的召回率以及85.33%的F1值。本文的算法有更小的模型复杂度和参数量,计算量为29.33 M,为Xception的66.4%。参数量为14.05 M,为Xception的66.9%。因此,Xception-CEMs能够有效对病虫害进行识别,有利于农业智能化发展。

全文