摘要
针对油气管道腐蚀预测领域传统的机器学习算法存在的诸如参数和模型结构确定困难、泛化误差大等问题,将随机森林回归算法(RFR)引入油气集输管道腐蚀预测领域,构建了灰色关联分析(GRA)融合随机森林回归算法(RFR)的预测模型。运用灰色关联分析进行数据处理以获取最优特征变量,再结合随机森林回归模型对内腐蚀速率进行预测,并基于相同的训练集建立BP神经网络和SVM的预测模型与之对比。结果表明:RFR预测模型的均方根误差和拟合优度分别为3.78%,0.996 5,预测效果优于常规的BP模型和SVM模型,具有较高的预测精度和鲁棒性,可为管道工程的防腐蚀设计提供价值依据。
- 单位