摘要

电力设备外表面不规则缺陷具有特征不明显、形态多变的特点,当前常规端到端的图像识别算法表现出特征提取能力不足、泛化性差等问题。为此,提出了一种基于域适应网络的设备外表面不规则缺陷图像检测模型。该模型首先构建了包含特征生成器和分类器的域适应架构,以增强模型的泛化能力;然后通过添加纹理提取支路、辅助损失支路的方式增强特征生成器对纹理信息的提取能力;最后通过模型的对抗学习,实现在目标域上的准确识别。测试结果表明,所提方法能在角度、光照差异较大的目标域锈蚀和渗漏油图像中依然保持较高的识别精度,其中针对漏油、锈蚀隐患交并比指标分别达到了89%、85%。所提模型可为设备缺陷检测提供参考。

全文