摘要

近年来,深度学习在事件检测领域取得了长足进展。但是,现有方法通常受制于事件检测标注数据的规模和训练阶段的不稳定性。针对上述问题,本文提出了基于语言学扰动的事件检测数据增强方法,从语法和语义两个角度生成伪数据来提升事件检测的性能。为了有效的利用生成的伪数据,该文探索了数据增加和多实例学习两个训练策略。在KBP 2017事件检测数据集上的实验验证了我们方法的有效性。此外,在人工构造的少量ACE2005数据集上的实验结果证明该文方法可以大幅度提升小数据情况下的模型学习性能。