摘要
基于深度学习的多标签文本分类方法存在两个主要缺陷:缺乏对文本信息多粒度的学习,以及对标签间约束性关系的利用.针对这些问题,提出一种多粒度信息关系增强的多标签文本分类方法.首先,通过联合嵌入的方式将文本与标签嵌入到同一空间,并利用BERT预训练模型获得文本和标签的隐向量特征表示.然后,构建3个多粒度信息关系增强模块:文档级信息浅层标签注意力分类模块、词级信息深层标签注意力分类模块和标签约束性关系匹配辅助模块.其中,前两个模块针对共享特征表示进行多粒度学习:文档级文本信息与标签信息浅层交互学习,以及词级文本信息与标签信息深层交互学习.辅助模块通过学习标签间关系来提升分类性能.最后,所提方法在3个代表性数据集上,与当前主流的多标签文本分类算法进行了比较.结果表明,在主要指标Micro-F1、MacroF1、nDCG@k、P@k上均达到了最佳效果.
-
单位湖南工商大学; 中南大学