针对传统变分模态分析(VMD)在轴承故障诊断中的分解结果主要受分量个数K和惩罚因子α的影响而导致解析力低的问题,提出了细菌觅食算法(BFA)优化VMD参数的滚动轴承故障诊断方法。首先利用细菌觅食算法优化VMD的参数K和α,得到最优参数组合[K,α],再利用优化后的VMD分解故障信号得出不同中心频率的本征模态分量(IMF),最后根据IMF的散布熵值选择最佳的IMF分量进行Teager能量谱分析。实验结果分析表明优化参数后的VMD算法解析力更强。