摘要

针对猫街水文站采用物理模型进行洪水预报时过程复杂、适用性和快捷性较差等问题,笔者选取BP神经网络模型作为预报模型进行洪水预报研究,选取2013—2018年猫街水文站共计6年主汛期逐日水文观测资料作为训练样本,2019—2021年共3年主汛期资料作为测试样本。研究结果表明,在现有数据条件下,除部分特殊年份外,采用BP神经网络模型进行洪水预报的精度较高,整体预报精度较好,对实际预报作业有一定的指导意义。同时,BP神经网络预报模型具有误差修正功能,随着模型学习训练期的延长、预报次数增加,预报精度还会相应提高,未来可运用到实际预报作业当中。