摘要
黑龙江(又称为阿穆尔河)是中国和俄罗斯之间的国际界河,近年来洪水事件频发,给流域内中俄两国带来巨大的人口伤亡和经济损失,加强该流域的洪水监测是两国面临的共同紧迫需求。传统的光学遥感影像受制于洪水期间多云多雨的天气状况,难以及时获得无云影像。本文充分利用全天候雷达数据的优势,提出了一种基于哨兵1号(Sentinel-1)合成孔径雷达数据监测大面积区域洪水的方法。通过Gamma分布和高斯分布拟合SAR影像后向散射系数的概率密度分布,迭代后验概率差值,自动获得全局阈值来分割初始的水体,基于辅助数据细化去除了初始水体中与水体相似的误分类型,并由形态学操作后处理提高了提取的洪水的均匀性。结果表明:(1)与传统的分割算法相比,本文提出的方法基于SAR影像后向散射系数的分布规律进行概率密度函数分段拟合,将全局统计划分为局部关系,显著地改善了常规分割算法在水体和非水体像素量级相差过大而表现不佳的情况;(2)研究获得了2017—2020年逐年的洪水分布,结果总体精度在87.78%~94.89%之间,Kappa系数在0.76~0.89之间;(3)特别是对于大面积半干旱地区,本文结合了后向散射特性、地形和其他辅助信息的关系,使得能够有效地保留水体并去除与水体后向散射系数相似的地物;(4)结果显示黑龙江(阿穆尔河)中下游沿岸城市哈巴罗夫斯克、阿穆尔斯克等地区为经常性泛洪区域,洪水面积整体呈增加趋势。研究表明,基于雷达数据对洪水空间范围进行时间序列监测,可以为中俄黑龙江流域洪水发展动态监测提供科学支撑。
-
单位江苏省地理信息资源开发与利用协同创新中心; 资源与环境信息系统国家重点实验室; 中国科学院地理科学与资源研究所; 中国矿业大学(北京)