摘要
在解决以合同惩罚和存储成本最小化为优化目标的流水车间重调度问题时,提出了一种启发式算法和改进的遗传混合算法;传统的遗传算法是一种基于优胜劣汰的随机、自适应的优化算法;通过复制,交叉和变异,将问题解编码所表示的"染色体"群在逐代进化,最终收敛到最合适的群体,从而得到问题的最优或满意解;但缺点是求解结果依赖于初始值,且运行时间过长;因此对传统遗传算法做了相应的改进,考虑到启发式算法的快速性,为充分发挥两种算法的优势,提出启发式算法和改进遗传混合算法;最后对性能进行分析;试验结果表明:该算法运行时间短,且在大规模数据集下,更易于靠近全局最优解。
- 单位