摘要
为解决传统涡轮增压器状态趋势预测方法存在的预测精度低和主观依赖度高的问题,提出一种基于长短时记忆(Long Short-Term Memory, LSTM)的涡轮增压器运行状态趋势预测方法。将涡轮转速作为涡轮增压器运行状态评价指标,建立增压器状态数据筛选原则,降低工况和外部因素变化对涡轮增压器运行状态变化特征的影响;利用LSTM隐含层内的循环节点,通过时序相似性搜索对涡轮增压器的状态趋势进行预测。实测结果表明,该基于LSTM的涡轮增压器运行状态趋势预测方法相比传统的基于最小二乘法的涡轮增压器状态趋势预测方法具有更好的预测效果,误差大幅减小,且趋势跟随性更强。
-
单位上海船舶运输科学研究所