摘要
以重庆市永川区朱沱镇Sentinel-2多光谱影像为例,构建随机森林分类模型,分别以单时相和多时相特征变量集为变量提取水稻空间分布,并对水稻对不同波谱特征集的响应程度及提取精度进行分析。分类结果显示,研究区水稻分布相对较为分散,且地块特征较为复杂,与区域典型地貌基本相适应;处于分蘖期的水稻稻田比处于灌浆期的稻田更有区分特征,利用多时相数据能够有效提高提取精度;通过传统的最大似然法、光谱角分类器提取地物精度有限,而基于机器智能分类的随机森林模型提取方法提取结果总体精度90%以上,Kappa系数达到0.80以上,可为西南山地地区作物信息提取提供参考。
-
单位重庆市农业科学院