摘要

隐马尔可夫模型(HMM)是非侵入式负荷监测常用的算法.由于电压波动与负荷自身电气特性变化等原因,负荷的测量状态如功率可能持续变化,运行过程中出现新的状态转移,但当前基于HMM的非侵入式负荷监测方法并未考虑如何处理该情况,缺乏状态辨识与功率分解的泛化能力.针对这一问题,本文提出并构建二元参数隐马尔科夫模型(BPHMM),结合DBSCAN聚类算法,基于有功功率和稳态电流对负荷状态进行聚类,降低了因电压波动和噪声数据对负荷状态聚类结果造成干扰的可能性;改进维特比算法使其考虑到HMM模型参数更新以实现对负荷状态预测泛化性能的改进;考虑到功率的随机波动性,基于极大似然估计原理构建功率计算优化模型并实现负荷的功率分解.本文采用公共数据集AMPds2对所述方法进行验证,测试算例验证了所述方法的有效性.