摘要

目的探讨CT纹理特征诊断及鉴别诊断胰腺导管腺癌(PDAC)、胰腺神经内分泌肿瘤(PNET)及实性假乳头状瘤(SPTP)的可行性。方法回顾性分析经病理证实的98例PDAC、62例SPTP及39例PNET患者的CT资料,于肿瘤横断面最大层面沿肿瘤边界手动勾画ROI,提取46个CT纹理特征。按二分类(PDAC vs rest;SPTP vs rest;PNET vs rest)和三分类(PDAC vs SPTP vs PNET)分组方式将数据分组。以单因素回归分析每个纹理特征鉴别二分类各组的诊断效能,并计算AUC;基于随机森林算法选择特征后,采用6种机器学习分类器(LDA、K-NN、RF、Adabost、NB、NN)对二分类和三分类分组进行分类,以多因素回归分析分类器的诊断效能,基于十折交叉验证标准计算AUC。结果采用单个纹理特征鉴别胰腺肿瘤时,低密度短域补偿和灰度不均匀性分别对PDAC vs rest和SPTP vs rest有较好鉴别能力(AUC=0.73、0.79,P<0.01),而总和均值对PNET vs rest具有极好鉴别能力(AUC=0.90,P<0.01)。分类器鉴别PDAC vs rest、SPTP vs rest、PNET vs rest的诊断效能很好或极好,最大AUC分别为0.88(RF)、0.86(RF)和0.94(Adaboost)。分类器鉴别三分类分组的准确率均较好,以RF最高(0.80)。结论 CT纹理分析可鉴别PDAC、SPTP和PNET;采用机器学习算法可进一步提高鉴别诊断效能。

全文