摘要

针对传统Census算法对噪声敏感且在弱纹理区域匹配精度低的不足,提出一种基于自适应权重的改进算法。在代价计算阶段,通过空间相似度加权计算得到参考像素值,设定阈值限定参考值与中心点像素的差异,使算法能够判断中心点是否发生突变并自适应选择中心参考像素值。在代价聚合阶段,引入多尺度聚合策略,将引导滤波作为代价聚合核函数,加入正则化约束保持代价聚合时尺度间的一致性。在视差计算阶段,通过胜者通吃法得到初始视差图。在视差优化阶段,对初始视差图做误匹配点检测及左右一致性检测,并对遮挡区域进行像素填充得到最终的视差图。基于Middlebury标准图的实验结果表明,该算法平均误匹配率为5.81%,对比于传统Census算法抗干扰性提升显著,并能在平均误匹配率表现上达到主流经典算法的性能水准。

全文