有缆水下机器人ROV是水下工程作业的重要工具,但由于不同水质特性及水中散射折射的影响,ROV水下图像普遍存在失真模糊、分辨率低等问题。为此构建深度分离可变形卷积代替原始卷积,采用高效表达稀疏性的特征提取结构实现对ROV水下目标的特征提取;再运用多深度机制的改进GAN网络生成器和类似马尔可夫架构的判别器建立数据集,增强水下图像;最后构建多项损失函数,提升网络的泛化性能并实现对ROV目标的快速检测。水下实验结果表明,该水下图像增强方法提高了ROV目标检测精度,符合预期要求。