摘要

受不可抗力影响,配电网低压台区数据中普遍存在缺失值,整体数据质量较差,限制了台区的精益化管理水平。传统的数据修复方法忽略了数据的周期性和时序性,修复精度较低。提出了一种基于图像编码和生成对抗网络的台区缺失数据修复方法。首先引入了一种一维时序信号编码图像预处理方法,将原始的时序信号转换为格拉姆角场图像,然后利用卷积神经网络在图像特征提取上的强大优势构建了生成对抗网络模型。结合像素损失和相似性损失的双重约束条件增强了生成图像的质量。整体流程由数据驱动,无需先验知识的分布假设与显式物理建模。最后的算例结果表明,该方法能够较为精确地实现台区缺失数据的修复。