摘要
山区环境中泥石流的孕育受多种因素的影响,为提高泥石流危险性的预测精度,提出一种萤火虫算法(firefly algorithm, FA)优化核极限学习机(kernel based extreme learning machine, KELM)的预测模型。首先,针对数据维度爆炸的问题,通过主成分分析(principal component analysis, PCA)数据降维,使得留有大部分致灾特征信息的因子输入训练模型;然后,使用萤火虫优化算法更新核极限学习机的参数,将四川省北川县监测数据输入优化后的预测模型,并与其他传统机器学习算法进行对比分析,验证该算法的优越性;最后,使用多种指标综合评估模型的预测效果。结果表明,FA-KELM模型能够有效地简化数据结构,提高泥石流危险性预测的准确性,为泥石流灾害预测方面的研究提供参考和借鉴。
- 单位