摘要
混沌系统的未知系统参数估计是实现混沌控制和同步的首要问题,通过构造一个合理的适应度函数,可将其转化为一个多维搜索空间的优化问题.提出一种融合改进骨干粒子群算法与改进差分进化算法的混合群智能优化方法来解决上述优化问题.对骨干粒子群算法中的粒子位置更新机制以及差分进化算法中的变异操作、交叉操作、交叉概率因子的设计等进行改进,有效兼顾了种群的多样性与算法的收敛性.在此基础上,讨论骨干粒子群优化算法与差分进化的融合优化策略,实现两个算法的协同进化,进一步提高算法的综合优化性能.用6个基准测试函数以及Lorenz混沌系统为例进行仿真实验,结果表明该方法具有全局寻优能力强、收敛速度快、搜索精度高、稳健性好等优点.
-
单位南昌大学机电工程学院; 贵阳学院