摘要
当前基于稀疏表示的行人再识别都是通过松弛l0正则项为l1正则项以达到逼近l0范数稀疏性的目的.在满足有限等距性质(RIP)条件下,l1和l0具有等价性,然而在具有杂乱背景、物体遮挡等众多干扰因素的行人再识别任务中,却很难满足RIP条件.因此,文中提出混合l2/l1/2范数的组稀疏表示方法,通过将gallery集中同一行人图像序列视为一组,利用l2范数约束组内结构,l1/2范数约束组间结构,对遮挡和杂乱背景等干扰因素具有更高的鲁棒性.为了进一步增强模型的判别性,引入人体结构约束,将行人图像划分为若干近邻块区域,针对每一区域分别构造适应性的混合l2/l1/2范数的组稀疏模型,最终融合全部稀疏模型得出再识别结果.在当前具有挑战性的2个多行人图像序列数据集PRID 2011和iLIDS-VID上的实验验证文中方法的有效性.
- 单位