摘要

对变压器的故障检测通常使用油中溶解气分析的方法,目前对变压器油中溶解气体的含量预测逐渐成为了研究热点.将XGBoost算法应用于油中溶解气体含量的预测,并且与支持向量机等5种算法进行比较,验证了XGBoost算法的可行性和精确性;并构建了XGBoost和网格搜索相结合的模型,该模型利用网格搜索法对XGBoost算法进行超参数筛选和优化,显著提升了XGBoost算法的性能.最后,利用内蒙古根河市110 kV变压器油中溶解气体数据,经过网格搜索法筛选出5个超参数,并对其优化.油中溶解气体含量预测仿真结果表明,超参数优化后的XGBoost算法的均方根误差和平均绝对百分比误差都有所下降,预测精度明显优于未进行超参数优化的模型.