在概率论与数理统计中,根据连续型随机变量的定义,讨论连续型随机变量的概率密度与分布函数的互求问题。结合实例分析给出结论:(1)对于一维连续型随机变量,当分布函数的非连续导数点是有限个时,只要将概率密度补充适当的定义,即可满足要求。(2)对于二维连续型随机变量,当分布函数的二阶混合偏导数在有限条光滑曲线上不连续时,只要将概率密度补充适当的定义,即可满足要求。