摘要
为了快速、准确地估算叶面积指数(LAI)通过无人机搭载成像高光谱相机获取了冬小麦3个生育期的影像数据从中提取出株高(Hcsm)。首先,分析了植被指数、Hcsm与LAI的相关性,挑选出最优植被指数;然后,分别构建了单个参数的LAI线性估算模型;最后,以植被指数、植被指数结合Hcsm为模型输入因子采用偏最小二乘回归方法构建LAI估算模型。结果表明:通过无人机高光谱遥感影像提取的Hcsm精度较高(R2=0.95);在不同生育期,大部分植被指数和Hcsm均与LAI呈0.01显著相关水平;基于最优植被指数结合Hcsm估算LAI的精度优于仅基于最优植被指数或Hcsm的估算精度;以植被指数、植被指数结合Hcsm为输入变量,通过偏最小二乘回归构建的LAI估算模型在开花期估算精度达到最高,并且以植被指数结合Hcsm为自变量估算LAI的能力更佳(建模R2=0.73,RMSE为0.64)。本研究方法可以提高LAI估算精度,为农业管理者提供参考。
-
单位安徽理工大学; 国家农业信息化工程技术研究中心; 北京农业信息技术研究中心