摘要

溶解氧(DO)是影响水生生物生长和水环境健康的重要环境因子,对DO精准预测有利于水产养殖业的健康发展。本研究根据福建闽江水口库区水质在线浮标SK11、SK18站位2022年1月到6月的水质数据和气象数据,分别运用BP神经网络预测模型和MIC-BP神经网络预测模型进行机器学习,给出预测结果,同时对两种DO预测模型的预测结果进行比较验证。结果表明:经过最大信息系数(MIC)的识别和筛选,13项输入因子中与DO相关性较大的因子有pH、水温、叶绿素a、电导率、浊度、氨氮浓度和亚硝酸盐氮浓度等7项;混合MIC-BP神经网络模型的效果明显优于独立的BP神经网络模型,候选因子经过MIC的识别和筛选后可以明显增加模型的性能,表现为:在SK11站位,MIC-BP神经网络模型的性能相对于独立BP神经网络模型,MAE降低约29.29%,RMSE降低约60.09%,NSE增加27.63%;在SK18站位,MIC-BP神经网络模型的性能相对于独立BP神经网络模型,MAE降低约17.16%,RMSE降低约16.23%,NSE增加12.77%。

  • 单位
    福建省淡水水产研究所

全文