摘要

目的 使用可见/近红外光谱技术实施橘小实蝇侵染柑橘不同时期的无损检测。方法 研究选取人工制备的不同侵染时期的柑橘样本作为研究对象,利用搭建的可见/近红外光谱系统测量的光谱信息结合人工标定的侵染时期,对原始光谱进行了5种预处理,采用竞争性自适应重加权算法(competitive adaptive reweighted sampling, CARS)、连续投影算法(successive projections algorithm, SPA)两类方法提取反映侵染柑橘时期变化的光谱特征波长,应用偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)建立基于特征波长光谱的柑橘侵染时期分类模型,对比分析不同光谱预处理方法的模型分类效果。结果 原始光谱经多元散射校正(multiplicative scatter correction, MSC)预处理的模型分类效果最佳,分别经CARS方法和SPA方法优选出了34和16个光谱特征波长。采用MSC-CARS-PLS-DA方法构建的模型分类效果最好,总准确率、假阳率分别为96.8%和0.0%,模型对健康柑橘和侵染柑橘有较强的分类能力。结论 通过可见/近红外光谱结合PLS-DA判别方法,可以实现橘小实蝇侵染柑橘的无损检测,为今后继续开展橘小实蝇侵染柑橘光谱检测研究提供参考依据。

全文