基于时空特征的社交网络情绪传播分析与预测模型

作者:熊熙; 乔少杰*; 吴涛; 吴越; 韩楠; 张海清
来源:自动化学报, 2018, 44(12): 2290-2299.
DOI:10.16383/j.aas.2018.c170480

摘要

社交网络用户情绪传播与用户的空间距离和时间跨度有关,并且受到多种交互机制的影响.从大规模社交网络数据中提取情绪传播的时空特征,研究用户行为对情绪传播的影响,对预测情绪传播趋势具有实际意义.利用线性回归获取的各行为子层的情绪传输率之间存在差异.提出一种基于多层社交网络的情绪传播模型,被称为ECM模型(Emotional contagion model).该模型包括三个行为子层,每层的拓扑结构各不相同,由该行为的交互历史决定.在真实数据上对ECM模型进行仿真分析,可以获得社交网络中情绪传播的过程与规律:1)中性情绪用户所占比例随时间逐渐增大,接近57.1%,而正向情绪与负向情绪比例始终接近. 2)情绪传输率越大,用户情绪更容易受到其他用户的影响而发生变化;初始情绪越中立的用户,在演化过程中情绪波动越小,而初始情绪极性越大的用户情绪波动越大.此外,通过实验对比该模型与其他情绪传播模型,表明ECM模型更加接近真实数据,对社交网络中情绪传播具有较好的预测效果,预测准确率相比其他模型可以提高1.8%~7.8%.

全文